Responses of a Triple Mutant Defective in Three Iron Deficiency-Induced BASIC HELIX-LOOP-HELIX Genes of the Subgroup Ib(2) to Iron Deficiency and Salicylic Acid

نویسندگان

  • Felix Maurer
  • Maria Augusta Naranjo Arcos
  • Petra Bauer
چکیده

Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2) BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant). We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2) transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.

Regulation of iron uptake is critical for plant survival. Although the activities responsible for reduction and transport of iron at the plant root surface have been described, the genes controlling these activities are largely unknown. We report the identification of the essential gene Fe-deficiency Induced Transcription Factor 1 (FIT1), which encodes a putative transcription factor that regul...

متن کامل

The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis.

Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of...

متن کامل

Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple

Fe deficiency is a widespread nutritional disorder in plants. The basic helix-loop-helix (bHLH) transcription factors (TFs), especially Ib subgroup bHLH TFs which are involved in iron uptake, have been identified. In this study, an IVc subgroup bHLH TF MdbHLH104 was identified and characterized as a key component in the response to Fe deficiency in apple. The overexpression of the MdbHLH104 gen...

متن کامل

Two bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana.

The regulation of iron (Fe) homeostasis is critical for plant survival. Although the systems responsible for the reduction, uptake, and translocation of Fe have been described, the molecular mechanism by which plants sense Fe status and coordinate the expression of Fe deficiency-responsive genes is largely unknown. Here, we report that two basic helix-loop-helix-type transcription factors, bHLH...

متن کامل

Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato.

Root iron mobilization genes are induced by iron deficiency downstream of an unknown signaling mechanism. The FER gene, encoding a basic helix-loop-helix domain protein and putative transcription factor, is required for induction of iron mobilization genes in roots of tomato (Lycopersicon esculentum). To study upstream regulatory events of FER action, we examined the control of FER gene and FER...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014